Dna Yapisi

atomu baz baza bazlar belli bir bol bu daha dalton dna gibi kimyasal nin pbs rna tablo tane veya zaman vs..

> Dna Yapisi

DNA YAPISI
DNA’NIN FİZİKSEL YAPISI

DNA’nın monomerik bileşenleri A, T, C, G bazlarını içeren dört tane deoksiribonükleotiddir. Bu 4 ana bazın dışında bazı DNA’larda değişikliğe uğramış birkaç farklı baz da bulunabilir. Bunlar; metillenmiş bazlar, sülfür içeren bazlar ve anormal bir baz – şeker bağı oluşturan bazlardır. Bunlar DNA’da kimyasal değişikliğe neden olabilir. DNA’da metil grubunun eklenmesi en yoğun şekilde sitozinlerde meydana gelir. Sitozinin 5´ numaralı karbonuna bir metil grubunun bağlanmasıyla 5 – metilsitozin meydana gelir. 5 – metilsitozin özellikle buğday tohumu DNA’sında bol miktarda bulunur (tablo – 1). Bununla birlikte T2, T4 ve T6 fajlarında 5 – hidroksi – metilsitozin tamamen sitozinin yerini almış durumdadır. Ayrıca ilginç bir örnekte PBS 1 bakteriyofajında görülür. Bilindiği gibi urasil bazı sadece RNA molekülünde bulunur. Fakat bu bakteriyofajda timin bazlarının yerini urasil bazları almıştır.
Adenin ve guanin bazları çift halkalı yapıdadır. Bu iki baza pürin bazları denir. Sitozin ve timin bazları ise tek halkalı yapıdadır. Bunlara ise pirimidin bazları denir. Dolayısıyla adenin ve guanin bazlarının moleküler ağırlıkları (A=135.13 dalton, G=151.13 dalton), sitozin ve timin bazlarının moleküler ağırlıklarından (C=111.10 dalton, T=126.12) daha fazladır. Eğer bir DNA molekülünde iki iplikçikten hangisi A ve G ce zengin ise bu zincire ağır zincir diğerine ise hafif zincir denir.
Gerek pürin gerekse pirimidin bazları birkaç tane çift bağ içerirler. Çift bağlar her zaman tek bağlara göre daha kararsız olduklarından, çifte bağ taşıyan moleküller, H atomlarının belli bir serbestliğe sahip olabilmesi için, farklı kimyasal biçimlerde bulunabilme özelliğine yeteneğine sahiptir. Bir H atomu bir N halkasından veya O atomundan bir diğerine hareket edebilir. Örneğin bir amino (NH2) grubundan ayrılarak bir imino (NH) grubu oluşumuna yol açabilir. Böyle kimyasal dalgalanmalara tautomerik değişim ve bu şekilde meydana gelen farklı moleküler yapılara da tautomer adı verilir. Fizyolojik koşullarda, pürin ve pirimidin halkalarına N atomları genellikle amino (NH2) biçiminde, guanin ve timinin C atomlarına bağlı O atomlarda genellikle keto (CO) biçimindedir. Bazların genelde belli taumerik biçimlerde bulunması genetik materyalin kararlılığı açısından önemlidir.

Bazların Molar Oranları:
Bazların molar oranları hidroliziz ve kromatografi yöntemleri ile belirlenebilir. Farklı türler arasında baz oranları büyük değişiklikler göstermesine rağmen, aynı türün farklı organ ve dokuları arasında benzer oranlara rastlanmaktadır (tablo – 1).

DNA kaynağı A G C T 5-metil – C
Boğa timusu 28.2 21.5 21.2 27.8 1.3
Boğa dalağı 27.9 22.7 20.8 27.3 1.3
Boğa spermi 28.7 22.2 20.7 27.2 1.3
Sıçan kemik iliği 28.6 21.4 20.4 28.4 1.1
Buğday tohumu 27.3 22.7 16.8 27.1 6.0
Maya 31.3 18.7 17.1 32.9 -
E. coli 26.0 24.9 25.2 23.9 -
M. tuberculosis 15.1 34.9 35.4 14.6 -
ØX 174 24.3 24.5 18.2 32.3 -

Tablo 1 : Çeşitli kaynaklardan elde edilen DNA’lardaki baz oranları.

Bir DNA molekülünde pürinlerin toplamı pirimidinlerin toplamına eşit olduğu gibi amino bazların toplamı da (A ve C) keto (okso) bazların (G ve T) toplamına eşittir. A ve T eşit molar miktarda bulunur. Dolayısıyla G ve C de eşit molar miktarda bulunur. Bu eşitlikler DNA heliksinin formasyonu hakkında en önemli verilerdendir ve bu Chargaff’ın kuralı olarak ifade edilir. Bu kanunu A + G / T +C = 1 şeklinde de ifade edilir. Bununla birlikte G + C / A + T 1’e eşit değildir. Bu oran çeşitli türlerde ölçülmüş ve değerlerin 0.45 ile 2.80 arasında değiştiği gösterilmiştir. Örneğin birçok bakteriyofajda bu oran 0.5 dir. Yüksek bitkilerde ve hayvanlarda bu oranın değişim sınırları daha dardır ve genel olarak 0.55 – 0.93 arasında bulunur.
Chargaff kuralının iki önemli istisnası vardır. Birincisi buğday tohumu DNA’sında G ve C eşit miktarda değildir. Çünkü buğday tohumunda bol miktarda bulunan 5 – metilsitozin birçok sitozinin yerini alır. İkinci istisna ØX 174 DNA’sındadır. Burada ne A T’ye ne de G C’ye eşittir. Çünkü ØX 174 DNA’sı tek iplikçiklidir.
DNA baz miktarları açısından iki gruba ayrılır. Bunlardan biri AT’ce zengin olanlar ve diğeri ise – ki bu daha az rastlanan tipidir – GC’ce zengin olanlardır.

DNA’nın Primer Yapısı:
Bir baz ile deoksiribozun bağlanması ile oluşan kısma nükleozid denir. Baz ve pentoz molekülü glikozidik bağ ile birbirine bağlanır. Glikozidik bağ şekerin 1´ karbon atomuyla pürinin 9. pozisyonundaki (N9), pirimidinin ise 1. pozisyonundaki (N1) azot atomu arasında meydana gelir. Bu yapıya fosfat (PO4) grubunun katılmasıyla oluşan molekül nükleotid adını alır. Başka bir ifade ile bu nükleozid monofosfattır. Fosfat grubunun bağlanması pentozun 5´ karbonunun esterleşmesiyle meydana gelir. DNA’nın yapıtaşları için kullanılan terminoloji aşağıdaki tabloda gösterilmiştir.

Baz Nükleozid Nükleotid Nükleik asit
Adenin (A) Deoksiadenozin Deoksiadenilat (dAMP) DNA
Guanin (G) Deoksiguanozin Deoksiguanilat (dGMP) DNA
Sitozin (C) Deoksisitidin Deoksisitidilat (dCMP) DNA
Timin (T) Timidin Timidilat (dTMP) DNA

Tablo 2 : Nükleik asit terminolojisi.

Bir DNA molekülünün tek iplikçiğinin oluşması deoksiribonükleotidlerin polimerizasyonu ile meydana gelir. RNA’da olduğu gibi DNA’da da nükleotidler arası bağlar fosfodiester bağlarıdır.
Bilindiği gibi deoksiribozda 5 karbon atomu vardır. Bu karbon atomlarının birincisine baz bağlanır. Üçüncü ve beşinci karbon atomları hidroksil grupları taşır. Bu hidroksil grupları sayesinde fosfat grubu bu karbon atomlarına bağlanır. Polimerizasyon reaksiyonunda kullanılan asıl yapıtaşları nükleozidtrifosfattır (NTP). Dört farklı bazdan dolayı 4 tip NTP (ATP, GTP, CTP, TTP) vardır. Şekil 4’de bir nükleotidin üç farklı yapısı (dAMP, dADP ve dATP) örnek olarak gösterilmiştir.

Adından da anlaşılacağı gibi NTP’ler üç fosfat grubu taşır. Bu fosfatlar içten dışa doğru α, β, γ olarak adlandırılır. Bu üç fosfat grubu deoksiribozun beşinci karbon atomuna bağlıdır. Bir NTP molekülü diğer bir NTP molekülü ile α pozisyonundaki fosfat grubu ile fosfodiester bağı kurar. Bu bağlanmada bir önceki nükleotidin 3´ ucu görev alır. Böylece zincir 5´ 3´ yönünde ilerler. Kovalent ester bağları olarak da bilinen bu bağlar son derece kuvvetlidir. Şeker fosfat omurgası 5´ – 3´ bağları ile oluştuğundan, bir polinükleotid zincirinin bir ucunda daima serbest 5´ – PO4 grubu taşıyan bir nükleotid diğer ucunda daima serbest 3´ – OH grubu taşıyan bir nükleotid bulunur. Bu nedenle polinükleotid zincirlerde bir polarite vardır. Birbirine zıt uçlar 5´ ve 3´ uçları olarak adlandırılır. İkinci ve dördüncü pozisyondaki karbon atomları hidroksil grubu taşımazlar ve herhangi bir molekül bağlamazlar. İkinci karbon pozisyonunda bir hidroksil grubunun varlığı siklik fosfat formasyonunu imkansız hale getirir.

Şekil 5 : DNA’nın primer yapısı (polinükleotid zincir).

Omurgadaki PO4 grubunun varlığı polinükleotid zincirlerin asit özellikte olmalarına yol açar ve nükleik asit terimi de bu özellikten kaynaklanır. Bununla beraber, fizyolojik koşullarda nükleik asitler genellikle tuz halinde ve nötr durumda bulunurlar.
DNA polinükleotid zincirleri kimyasal veya enzimatik yolla hidrolitik olarak nükleotidlerine parçalandığında, kırılma fosfodiester bağlarının her iki tarafında da meydana gelebilir. Buna göre serbest kalan nükleotidler fosfat gruplarını pentozun 5´ ve 3´ pozisyonuna bağlı olarak taşırlar. Buna göre nükleik asit yapısından ayrılan nükleotidler nükleozid – 3´ – monofosfat veya nükleozid – 5´ – monofosfat olabilirler.

DNA’nın Sekonder ve Çift Sarmal Yapısı:
1953’de Watson ve Crick, DNA’nın bilinen çift sarmal (double helix) modelini kurdular. Watson – Crick modeli, X – ışını ile çalışan kristallografların, organik kimyacıların ve biyologların düşünce ve çalışmalarına dayanır. Bunlardan biri, Wilkins ve Franklin tarafından, izole edilmiş DNA fibrillerinin X ışınlarını kırma özelliklerinin açıklanmasıdır. Elde edilen X ışını fotoğrafları, DNA’nın zincirlerindeki bazların diziliş sırasına bağlı olmaksızın, çok düzenli biçimde dönümler yapan bir molekül olduğunu göstermektedir. Aynı zamanda, böyle bir molekül yapısının birden fazla polinükleotid zincirin birbiri etrafında dönümler yapmasıyla meydana gelebileceğine işaret etmekte ve molekülde tekrarlanmalar yapan kısımlar arasındaki uzaklıklar hakkında bilgi sağlamaktadır.

Watson – Crick probleme, “DNA yapısı, onun biyolojik görevi ile ilişkili olmalıdır” düşüncesiyle yaklaşmışlardır. Bu ilişki teorinin anahtarı durumundadır. Hücrenin makromoleküllerinin yapısının biyolojik görevle ilişkili olması, Watson – Crick teorisiyle önemli şekilde vurgulanır ve bu düşünce moleküler biyolojinin temelini oluşturur.
Watson ve Crick’in sunduğu modele göre DNA çift zicirli yapıdadır. Bu çift zincir iki tek zincirin bazları arasında hidrojen bağları oluşmasıyla meydana gelir. Bu iki polinükleotid zincir ortak bir eksen boyunca sağa dönümlü bir heliks oluşturur.
İki polinükleotid zincir birbirine H bağlarıyla tutunur. Bu bağlar, dönümler yapan DNA molekülünün stabilitesinin korunmasında büyük ölçüde yardımcı olurlar. Baz çiftleri çift sarmalın termodinamik stabilitesine iki yolla katılır. Bunlardan biri, bazlar arasında H bağı oluşurken enerji açığa çıkmasıdır. Diğeri ise, sarmal boyunca üst üste dizilmiş baz çiftlerinin elektron sistemleri arasındaki etkileşimler sonucu oluşan hidrofobik baz dizilişlerinden enerji açığa çıkmasıdır. Bu etkileşimler sarmal yapıyı negatif yüklü fosfat grupları arasındaki itici elektrostatik kuvvetler karşısında dengeler.
Guanin ile sitozin arasında üçlü H bağı oluşurken, adenin ile timin arasında ikili H bağı oluşur (şekil 7). Bu bağların bazların hangi atomları arasında oluştuğu tablo 3’de gösterilmiştir. G ile C arasında üçlü, A ile T arasında ise ikili H bağı oluşmasının sebebi bu bazların moleküler yapısından kaynaklanmaktadır. H bağı sayısındaki bu fark olası yanlış baz eşleşmelerinin yapılmasına engel olmaktadır.

H bağı oluşan atomlar Aradaki uzaklık (Å)
T – A N3 – H…………..N1
O4…………..H – N6 2.835
2.940
C – G O2…………..H – N2
N3…………..H – N1
N4 – H………….O6 2.86
2.95
2.91

Tablo 3 : H bağlarının oluştuğu atomlar ve aradaki uzaklık

Bazlar arasında H bağları oluşumunun özgüllüğü, iki polinükleotid zincirdeki fosfodiester bağlarının birbirine göre ters yönde olmasına yol açar. Bu nedenle iki polinükleotid zincir birbirine ters yönde paraleldir. Yani iki zincir kimyasal yapı bakımından birbirine zıt durumdadır (şekil 8).

İki polinükleotid zinciri birbirine bağlayan H bağları daima bir pirimidin bazı ile bir pürin bazı arasında meydana gelir. Baz eşleşmesi adı verilen bu bağların özgül bir biçimde meydana gelmesi pürin ve pirimidin bazlarının yapılarındaki bazı farklardan meydana gelir.
Bunlardan birisi sterik kısıtlama denilen olaydır. Yapılarından da anlaşılacağı gibi pürin ve pirimidin bazlarının uzayda kapladıkları yer farklıdır. Pirimidin bazları (C ve T) pürin bazlarından (A ve G) daha küçüktür. Buna karşılık iki polinükleotid zincirin şeker – fosfat omurgasının oluşturduğu sarmal yapıda eşleşme yapan baz çiftlerine bağlanan glikozidik bağlar arasındaki uzaklık DNA molekülünün her yerinde 10.85 Å dür. Bu mesafenin dolayısıyla da DNA’nın stabilitesinin korunması için daima bir pürin ile bir pirimidin bazının eşleşmesi gerekmektedir.
İkinci bir sebep ise H bağları oluşumu gereksiniminin kısıtlaması. Pürin ve pirimidin bazlarındaki H atomları iyice belirlenmiş pozisyonlarda bulunurlar. Bazlar arasında sıkı bir etkileşim sağlamak için, H bağlarının yönelimleri ve uzaklıkları ancak adenin ile timin ve guanin ile sitozin arasında olmaktadır. Buna göre, pürin ve pirimidinler arsındaki baz eşleşmesi; daha da özgül olarak sadece adeninle timin ve guaninle sitozin arasında meydana gelir. Bir DNA molekülünün açık yapısı şekil 9 da gösterilmiştir.

Yukarıda açıklanan nedenlerden dolayı bir DNA sarmalının çapı yaklaşık 2 nm (20 Å) olarak sabit kalmıştır. DNA molekülü sağa doğru dönümler yaparken dönümler sırasında zincirlerdeki bazları şeker halkalarına bağlayan glikozidik bağlar tam olarak karşı karşıya gelmezler. Bunun sonucu olarak, çift sarmalın şeker fosfat omurgaları eksen boyunca eşit aralıklı yer kaplamazlar ve omurgalar arasında oluşan olukların boyutları eşit değildir. Daha derin olana büyük oluk, diğerine ise küçük oluk denir (şekil 10).
Nükleotidlerin bazları molekülün omurgasının iç kısmında bulunur. Bazların konumları sarmalın eksenine dik durumdadır. Birbirine komşu baz çiftlerinin dönümleri arasındaki uzaklık 3.4 Å dür. Ayrıca her baz çifti komşusuna göre 36º’lik açı yapacak şekilde yerleşmiştir. Buna göre, yaklaşık 10 baz çifti 360º’lik tam bir dönümü tamamlayacağından, her dönümün boyu 34 Å dür (şekil 10).

DNA çift sarmalının genetik açıdan en önemli özelliklerinden birinin ortaya çıkmasını da baz eşleşmelerindeki özgüllük sağlar. Bu özellik DNA molekülündeki iki polinükleotid zincirin birbirinin tamamlayıcısı olmasıdır. Bu kavram bazlar arasındaki eşleşmenin daima A – T ve G – C arasında olmasından kaynaklanır. A ile T’nin ve G ile C’nin birbirini tamamlaması özelliğine göre, bu özgül bazları karşılıklı olarak taşıyan iki zincirin birbirinin tamamlayıcısı olduğu kabul edilir. Buna göre, bir zincirdeki baz dizisi diğerindeki diziyi belirler.
Tamamlayıcılık özelliği, genetik materyalin işlevlerini doğru biçimde nasıl yapabildiğinin açıklaması açısından DNA’nın en önemli temel özelliklerinden biridir.
Çift sarmalın dışta bulunan şeker – fosfat omurgası yüksek derecede negatif yüklüdür. İn – vitro çözeltilerde bu yükler metal iyonlarıyla (örneğin Na ile) nötr duruma getirilir. Fizyolojik koşullarda ise nötr hale getirilme pozitif iyonlarla (katyonlar veya bazik proteinlerle) yapılan etkileşimler sonucu sağlanmaktadır.

DNA Yapısının Biyolojik Anlamı:
Hücrenin kalıtım materyalinin iki ayrı görevi olmalıdır. Birincisi, bu materyal kendi kendine çoğalabilmeli; ikincisi, herhangi bir hücrenin yapısı veya görevinde gereken işleri başarabilmelidir.
DNA ipliklerinin birbirini tamamlayıcı olması ve tamamlayıcı bazlar arasında çok özel bağların bulunması aradaki hidrojen bağlarının kendiliğinden meydana gelmesi, DNA’nın yalnız başına kendine benzer yeni bir molekülün oluşmasını sağlar. DNA molekülünün bir yarısı, yeni oluşan molekül için bir kalıp gibi rol oynar. Hidrojen bağlarının meydana gelişi, bir enzimle katalize edilmeksizin, kendi kendine olan bir olaydır. Özel tamamlayıcı bazların seçimi, bu yüzden katalize edilmeye gereksinim göstermez. Fakat nükleotidlerin fosfodiester bağlarla bağlanması bir kovalent reaksiyondur ve enzimatik katalizle gerçekleşir.
DNA’nın ikinci biyolojik görevi, protein sentezinde kullanılmak üzere gerekli bilgiyi sağlamaktadır. Bu bilgi naklinden DNA yapısındaki bazlar sorumludur.

DNA’nın Moleküler Ağırlığı:
Bir DNA molekülünün ağırlığı içerdiği baz çift sayısıyla doğru orantılıdır. Nükleik asitler uzun ve dallanmamış moleküllerdir. Çaplarının dar olmasına karşılık boyları çok uzundur. Örneğin 3000 baz çifti (3kb) taşıyan bir DNA parçasının boyu 1 µm dir. Bilindiği gibi DNA’nın çapı 2 nm dir.
Organizmaların yapısı karmaşıklaştıkça içerdikleri genetik materyalin kitlesi genellikle artış gösterir. Bunun temel nedeni, basitten gelişmiş canlılara doğru gidildikçe gen sayısının artmasıdır. Örneğin, SV40 virüsünün 5.2 x 103 baz çiftinden ibaret genomunda sadece 5 – 10 gen bulunur. E. coli genomunda ise yaklaşık 4 x 106 baz çifti vardır. Eğer E. coli’de bir genin ortalama 1000 baz çifti içerdiğini var sayarsak, bu bakteride yaklaşık 4000 gen bulunması gerekir.
DNA moleküllerinin moleküler ağırlıklarını klasik kimyasal metodlarla tam olarak belirlemek oldukça güçtür. DNA moleküllerinin ağırlıklarının ölçülmesinde en çok kullanılan yöntemler şunlardır;

• viskozitenin ölçümü,
• sedimantasyon oranı,
• elektron mikroskobu ile,
• otoradyografi,

Genelde bu metodların iki veya daha fazlasının bir kombinasyonu kullanılabilir.
DNA moleküllerinin ağırlıkları 106 ile 109 dalton (1 dalton= 1.66 x 10-24 g dır.) değişir. Zaman zaman ağırlıklar 109 da geçebilir.
Değişik türlere ait DNA molekülleri ağırlıkları tablo 4 de verilmiştir.

Kaynak M. A. Uzunluk Nükleotid çifti sayısı
E. coli 2.2 x 109 1 mm 3 x 106
H. influenzae 8 x 108 300 µm 12 x 105
Bakteriyofaj T2-T4 1.3 x 108 50 µm 2 x 105
Bakteriyofaj λ 33 x 106 13 µm 0.5 x 105
Bakteriyofaj ØX174 1.6 x 106 0.6 µm -
Polioma virüsü 3 x 106 1.1 µm 4.6 x 103
Fare mitokondrisi 9.5 x 106 5 µm 14 x 103

Tablo 4 : Çeşitli DNA moleküllerine ait veriler.

DNA’nın Farklı Biçimleri:
Watson ve Crick’in buluşlarından sonra son yıllarda, DNA ipliklerinin X ışını kırılma özelliklerini çalışılmasıyla, DNA’nın hiç değilse 3 yapısal şekilde bulunduğu gösterilmektedir. Watson ve Crick’in yapısal özelliklerini belirlediği DNA, bu gün B – DNA diye isimlendirilir. Farklı yapısal şekildeki diğer DNA’lar ise A ve Z DNA’lardır. Bu farklı organizasyonlar, bazı özel nükleotid sıralarının çift helikse devamlı bir bükülme verebilmesiyle ortaya çıkar. Böylece her bir DNA şekli, hem çift heliksin dışından yalnızca bazlarını eşleştirerek ve hem de bazların iskeletin eksenine göre pozisyonlarındaki ayrıntılarını belirleyerek ayırt edilir. Bu üç tip DNA dışında da farklı özellikte DNA’lar vardır fakat bunlar çok az miktarda bulunduklarından burada incelenmeyecektir.
B – DNA : Hücresel DNA’nın büyük bir kısmı bu gruba dahildir. Şu ana kadar incelediğimiz DNA’da B – DNA’dır. Kısaca tekrar değinmek gerekirse çapı yaklaşık 2 nm olan bu DNA biçiminin her dönümünde yaklaşık 10 baz çifti bulunur. Bazı kaynaklarca bunu 10.5 olabileceği de belirtilmiştir. Sağa dönümler yapan DNA’da baz çiftlerinin düzlemleri sarmalın eksenine dikeydir ve sarmal küçük ve büyük oluklara sahiptir. Düşük iyon yoğunluklu çözeltilerde ve nem derecesi çok yüksek (%92) fibrillerde DNA B biçiminde bulunur. Canlı hücrelerin fizyolojik koşullarına uyum gösterecek DNA biçimi de B – DNA’dır.
A – DNA : Sağa dönümlü ve her dönümde 11 baz çifti bulunan DNA yapısıdır. Baz çiftlerinin düzlemleri eksene göre 20º’lik eğimlidir ve komşu baz çiftleri arasındaki uzaklık 2.7 Å dür. Bu nedenle A – DNA molekülleri B yapısındaki benzerlerinden daha kısa ve geniş çaplıdır (23Å). Küçük oluklarda daha belirgin ve derindir. Sodyum, potasyum veya sezyum iyonları varlığında ve %75 nem içeren fibrillerde DNA A biçiminde bulunur, yani B – DNA’nın dehidratasyonuyla meydana gelir.

Hücrede A – DNA biçiminde bölgelerin bulunup bulunmadığı ve eğer bulunuyorsa işlevi tam olarak bilinmemektedir. Bununla beraber, 2´ OH grubunun B biçiminin oluşmasını engellemesi nedeniyle, RNA’nın çift zincirli bölgelerinin A biçiminde olması gerekir.
Z – DNA : Bu biçimin en ayırt edici özelliği dönüm yönünün sola doğru olmasıdır. Z – DNA dönüm boyu 45.6 Å olan ve dönümlerinde en fazla 12 baz çifti içeren bir yapıya sahiptir; çapı da diğerlerine göre daha dardır (18Å). Şeker – fosfat omurgası sarmal boyunca zikzak bir hareket yaptığı için bu yapı Z – DNA olarak adlandırılır. Z – DNA da sadece tek çeşit oluk bulunur.
Pürin ve pirimidinlerin düzenli olarak birbirini izlediği dizilere sahip DNA’larda, uygun iyon koşullarında, Z biçimi oldukça kolay elde edilmektedir. Ayrıca tekrarlanan GC dizilerinin bulunduğu bölgelerde, özellikle sitozinlerin C5 atomlarına metil grubu eklenmesiyle oluşan 5 – metilsitozinler B – DNA’nın Z – DNA biçimine dönüşmesine yol açmaktadır. Hatta, metillenme pürin – pirimidin tekrarı olmaksızın da aynı sonucu yaratmaktadır.
Z biçimi in – vitro bazı olağan dışı koşullarda elde edilmektedir. Örneğin yüksek tuz yoğunluğu kullanılması nükleotidler arasındaki itme kuvvetini arttırmakta ve Z – DNA’nın dar çaplı yapısını ayarlamaktadır. Z – DNA’nın hücre içindeki oranı henüz bilinmemektedir.
Şekil 11 : (a – c) A, B ve Z – DNA’lar (M=büyük oluk, m=küçük oluk).
Bu üç tip DNA molekülüne ait bazı ölçüm değerleri aşağıdaki tabloda verilmiştir.

DNA biçimi Baz çifti sayısı/dönüm Dönüm/baz çifti Baz çiftleri arası uzaklık Sarmal çapı
B 10.4 +34.6º 3.38 Å 20 Å
A 11 +34.7º 2.56 Å 23 Å
Z 12 -30.0º 3.71 Å 18 Å

Tablo 5 : Çeşitli DNA biçimlerine ait bazı veriler (+ = sağa dönüm, – = sola dönüm).

Calladin Kuralları
Chris Calladin 1982’de yaptığı deneysel çalışmalar sonucunda DNA’nın yapısıyla ilgili çeşitli kurallar bulmuştur.Bu kurallar sonucunda Calladin bir DNA yapı modeli ortaya atmıştır.Bu model tamamlanamamıştır çünkü elektrostatik ilişkileri faktörleri ve hidrojen bağlarının hidrasyonunun faktörleri tam olarak bilinmez.
*B-DNA Sarmal ekseninin düz olmasına gerek yoktur.Ancak 112 Å’un yarıçapı ile kıvrılabilir.
*Kıvrılma açısı p 36 der.’de değişme gösterebilir. Fakat 28 der.’den 43 der. Kadar çeşitlilik gösterebilir.
*Pervane dönüşünün sınırları C-G çifti için +11 der. Ve A-T çifti için +17 der.’dir.
*Baz çiftleri çarpışmaları azaltarak uzun eksenleri boyunca dönerler.
*Şeker kıvrılması C3’-exo’dan O 4’endo ve C2’endo’ya kadar değişiklik gösterir.
*Bazlar bölgesel olarak kayarlar ve bu şekilde üst üste çakışırlar. D(TCG) içinde ki burada C-2 , G-3 ile stoğu yükseltmek için sarmal ekseninin arasında hareket eder.
Ave B –DNA’nın polimorfları çift ipliğin yer yer açılmaları ile ve kristal yapıdaki yan çıkışlar açıklıklar ve nanomerik parçalar halinde gözlenir.
DNA EĞRİLMESİ (bending)
Ave B tipi birer sarmal arasındaki birleşme sonucu eğri DNA ortaya çıkar. Sarmal ekseninin içinde 26 der.’lik bir eğrilme ile oluşur.Birleşmeler her 5 baz’da bir ve karşılıklı oluşur. Bu eğrilme olayının bir sonucudur ki bu DNA’nın sürekli bir kıvrılmaya sahip olmasını sağlar. Uyumsuz baz çifti eşleşmeleri 2 şekilde olur.
1-Transition mismatch (geçişle yanlış eşleşme)
2-Transversion mismatch (çaprazlama ile yanlış eşleşme)
A,B ve Z formlarında G-T baz çiftlerinde gözlenir.Tipik “wobble”çiftleri oluşur. Bu çiftler anti-anti glikozilik bağlara sahiptir.D(CGCGAATTAGCG)dodecamerin kristalleri bir (anti) G-A (syn) yanlış eşleşmiş baz çiftine sahiptir. Bu eşleşme 2H bağı ile olur. Diziye bağımlı değişiklikler,DNA’nın proteinlerce tanınmasını sağlayan önemli bir faktördür. Buna göre şöyle bir sonuca varılabilir. DNA yapısal olarak diğer makromoleküllerle ilşki kuracak şekilde evrim geçirmiştir. Buna göre serbest doğrusal DNA sarmalı biyolojik olarak en uygun yapıdır.
Kaymış (Slipped) Yapılar: Doğrudan dizilerde oluşurlar ve önemli düzenleyici bölgelerin üst taraflarında yer alırlar.Tanımlanan yapılar tek iplikli nükleazların “cleaveage”dokuları ile uyumlu olmakla beraber iyi bilinmemektedir.
Pürin-pirimidin ekleri: Bunlar düşük sıcaklıklarda büyük girintiler de , baz çiftleşmesinde uzun aralıklı , dizilere bağımlı tekil baz kaymaları ile alışılmışın dışında yapılar oluşur.
Anizomorfik DNA: Bu doğrudan tamirle alışılmadık fiziksel ve kimyasal özellikleri olduğu bilinen viral DNA’nın eklem bölgelerindeki dizilerle ilgili DNA yapılarına verilen addır. İki birbirini tamamlayıcı iplik değişik yapılara sahiptir. Bu negatif süpercoillerde ortaya çıkan kıvrılmaların gerilimi altında görülen, dizi merkezlerinde meydana gelen ardışık yapısal kırıklara yol açar.
Saç tokası şeklindeki ilmekler(Hairpin loop): Bunlar ters dönmüş tamamlayıcı diziler sahip parçaları olan tekil oligonükleotid iplikleri tarafından oluşturulur.Örneğin 16-merd (CGCGCGTTTTCGCGCG)hekzamer tekrarına sahiptir ve onun kristal yapısı 4T’li ilmeği olan hairpin ve bir Z DNA hekzamer gövdesi gösterir. B u ters dönmüş diziler DNA dupleksinde yer aldıkları zaman haç formunun oluşumu için gerekli koşullar meydana gelmiş demektir.
Haç benzeri (cruciform): Bu iplik içi baz çiftleşmesi içeren bir yapıdır. Tek bir açılmamış dupleks bölgeden iki hairpin ilmeği ile iki gövde meydana getirirler. Tersine dönmüş dizi tekrarlar palindromlar olarak bilinir. Bunlar kısa bir aradan sonra ters yöndeki aynı dupleks dizinin takip ettği DNA dupleks dizilerine sahiptir. Bu durum decamer olamayan iki dizinin palindromlarının yer aldığı Pbr322 bakteriyal plazmidinin içinde de gözlenir. Her ne kadar ilmeklerde bazlar kısmi olarak depolanıyor olsada tek bir haç şeklindeki yapının oluşumunu enerji miktarı 75 kjmol kapalı dairesel süper helikal DNA’ların kullanıldığı bu yapının deneylerinde , bu enerji negatif süpercoillerin formundaki gerilme enerjisinin serbest bırakılması ile elde edilir.Bu da haçın kollarının uzunluğu ile doğrudan ilişkilidir. 10,5bç’lik bi kolun oluşumu süpercoili bir dönüş kadar çözer.

Nadir Görülen DNA Yapıları:
1980’den beri alışılmışın dışında DNA yapıları olduğu bilinmekteydi. Bazıları DNA’ların süper coillerine bağlıdır.
Kıvrık DNA:
DNA duplexleri 150 baz çiftinden daha uzundur. Dairelerin kovalent kapanış tarafından açık DNA mini dairesini eğriliği diziye bağlıdır. DNA’nın bu eğriliği tripanozomatitlerden alınan kinetoplast DNA’sı içinde gözlemlenmiştir. Bu açık DNA mini dairelerinin kaynağını oluşturur. Kinetoplast DNA’sı kısa A eklere sahiptir. Bunlar genel dizi tarafından 10 baz çifti aralıklarla yerleştirilmiştir. Herbir tekrar için 20-25 eğrilik içerir.DNA eğrilmesi bu poli (DA eklerinin kalıtımsal özelliği olup çok sayıda oligonükleotitler içinde gözlenebilirler. Richard Dickerson poli (dA) ekleri doğrusaldır. B form kristal yapıda gözlenmiştir. Eğrilme ise sarmalın sınırları içinde meydana gelir. Herbir yarım dönme başına bu doğrusal dA eklerinin tekrarlı değişimi kıvrık DNA’yı oluşturur. (Şekil 16)
W-DNA:
Sol yönde dönen çift sarmal yapı için zikzak model önerilerek oluşturulmuştur. Daha az dönüme sahiptir. Genel olarak B DNA’ya benzer bir glikozil geometrisi bakımından Z DNA’ya çok benzer. Sitozin C endo şeker kıvrımlarına sahiptir. W’de de Z DNA daki gibi minor girintiler ve major girintiler yüzeyseldir. Z DNA W DNA’dan daha az enerjiye sahiptir.

> Dna Nedir-nerede ßulunur-keşfi-şekli-yapısı

DNA

1-) DNA NEDİR VE NEREDE BULUNUR ?

DNA “Deoksi Ribo Nükleik Asit” isimli bir tür molekül grubunun kısaltılmış isimidir. DNA’nın çift zincirli ip merdivene benzer. Çift zincirli yapıdaki DNA zinciri oldukça uzun bir zincirdir.Bu zincir hücre içindeki özel enzimler ve proteinler aracılığı ile paketlenir. Nasıl ki uzun bir ipi makaraya düzenli bir şekilde sarıyorsanız, hücrede buna benzer bir mekanizma ile DNA yı paketleyerek çekirdeğinin (Nukleus) içine yerleştirir.DNA her hücrede bulunur.Örneğin böbreklerinizin hücrelerinde, karaciğerinizin hücrelerinde, kemik hücrelerinizde kısacası vücudunuzdaki her hücrede DNA molekülü mevcuttur.

2-) DNA’NIN KEŞFİ:

MİESCHER :
1869 yıllarında ilk olarak Miescher tarafından hücre çekirdeğinde özel bir madde bulundu ve buna Miescher “ Nüklein” adını verdi . Daha sonra ise nükleit asitlerin iki tipte olduğu anlaşıldı . Birincisi timüsten elde edilen timonükleik asit, ikincisi bira mayalarından elde edilen zimonükleik asit . Timonükleik asit hayvanlar alemine , zimonükleik asit ise bitkiler alemine özgü sayıldı.

FEULGEN – ROSSENBECK :
1924 yıllarında ise Feulgen ve Rossenbeck timonükleik asidin çok duyarlı bir tepkimesini tanımladılar ; böylece her iki nükleik asidin her iki canlılar aleminde bulunduğu ispat edilebildi. ondan sonra timonükleik asit çekirdeğe , zimonükleik asit ise sitoplazmaya ait özgü yapı maddeleri sayıldı.

LEVENE – MORİ :
1929 yılında Levene ve Mori tarafından timonükleik asidin DNA , zimonükleik asidin ise RNA Olduğu anlaşıldı.

WATSON – CRİCK :
1953 yılında Watson ve Crick DNA molekülünün kendine has özelliklere sahip bir çift sarmal yapı halinde bulunduğunu ileri sürdüler. Bu araştırıcıların önerdikleri DNA yapısı o tarihlerde başka araştırıcılar tarafından ortaya konulan DNA ya ilişkin önemli bulgulara dayanmaktadır. Bunlardan biri, Wilkins ve Franklin tarafından, izole edilmiş DNA fibrillerinin X-ray ışınlarını kırma özelliklerinin açıklanmasıdır. Elde edilen X ışını fotoğrafları, DNA nın zincirlerindeki bazların diziliş sırasına bağlı olmaksızın, çok düzenli biçimde dönümler yapan bir molekül olduğunu göstermektedir. Ayrıca TMV (tütün Mozaik Virüsü) üzerinde yapılan çalışmalar da DNA ile ilgili çalışmalarda ışık tutmuştur.

İşte Watson ve Crick bu bulguları değerlendirerek böyle özelliklere sahip DNA makro molekülünün sekonder yapısına ait bir model geliştirdiler. Bu modele göre, bir çok sorunun açıklanması yapılabildiğinden dolayı 1962 yılında bu iki bilim adamına NOBEL ÖDÜLÜ verildi.

Bir başka önemli bulguda Chargaff tarafından saptanmıştır. Herhangi bir türe ait DNA nın nükleotidlerine parçalandığında serbest kalan nukleotidlerde adenin miktarının timine, guanin miktarının da sitozine daima eşit olduğunun saptanmasıdır.. Yani Chargaff kuralı‘na göre doğal DNA moleküllerinde adeninin timine veya guaninin sitozine oranı daima 1’e eşittir. (A/T=1 ve G/C=1).

3-) DNA’NIN ŞEKLİ VE YAPISI :
DNA molekülü, heliks (=sarmal) şeklinde kıvrılmış, iki kollu merdiven şeklindedir. Kollarını, yani merdivenin kenarlarını, şeker (deoksiriboz) ve fosfat molekülleri meydana getirir. Deoksiriboz ile fosfat grupları ester bağlarıyla birbirlerine bağlanmıştır. İki kolun arasındaki merdiven basamaklarında gelişigüzel bir sıralanma yoktur; her zaman Guanin (G), Sitozin’in (C ya da S); Adenin (A), Timin’in (T) karşısına gelir. Hem pürin (yani adenin ve guanin) ile pirimidin (yani sitozin ile timin) arasındaki hidrojen bağları, hemde diğer bağlar, meydana gelen heliksin düzgün olmasını sağlar. Pürin ve pirimidin bazları, yandaki şekerlere (Riboz), glikozidik bağlarla bağlanmıştır. Baz, şeker ve fosfat kombinasyonu, çekirdek asitlerinin temel birimleri olan nükleotidleri meydana getirmiştir. Dört çeşit nükleotid vardır. Bunlar taşıdıkları bazlara göre isimlendirilirler (Adenin, Guanin, Sitozin,Timin).

NÜKLEOZİT
AZOTLU ORGANİK BAZ + DEOKSİRİBOZ ŞEKERİ + FOSFORİK ASİT
NÜKLEOTİT

Nükleotidler birbirlerine fosfat bağlarıyla bağlanarak, şeker ve fosfat kısımlarının birbirlerini izlediği serilerden oluşan bir omurgaya sahip uzun ve dallanmış polinükleotid zincirlerini meydana getirmiştir. Kovalent ester bağları veya fosfodiester bağları olarak da bilinen bu bağlar son derece kuvvetlidir.

Fosfodiester bağlarının varlığı DNA molekülünün tek zincirli yapı halinde iken bile dayanıklı ve stabil yapıda olmasını sağlar. Genetik mühendisliğinin hedeflerinden biri olan klonlama çalışmaları, doğal yolla gerçekleşmesi mümkün olmayan kovalent bağ kırılmalarını gerçekleştirerek yeni türler oluşturma çabalarını arar.

Hidrojen bağları daima bir pürin(A,G) ile bir pirimidin (T,C) bazı arasından meydana gelir. A-T baz çiftinde 2 hidrojen bağı, G-C baz çiftleri arasında ise 3 hidrojen bağı bulunmaktadır. Hidrojen bağlarının özelleşmesi; anahtar kilit modelinini andıran, uygun nukleotid moleküllerinin karşılıklı gelerek birbirlerine yine uygun sayıda hidrojen bağları ile bağlanmasını sağlar. Böylece zincirin bir kolunda bulunan nukleotidlerin dizilişi,karşı kolda bulunan nukleotidlerin dizilişini bir çeşit dikte ve kontrol eder. Tesadüfe bırakmayan bir titizlikle molekül yapısı oluşturulur ve kontrol edilir.

DNA molekülünün en önemli özellik iki polinükleotid zincirin birbirinin tamamlayıcısı olmasıdır. Pozitif (+) ve negatif (–) iki polinukleotid zincirlerinin tamamlayıcılık özelliği,genetik materyalin işlevlerini doğru biçimde nasıl yapabildiğinin açıklanması açısından DNA’nın en önemli temel özelliklerinin başında gelir.

DNA bir organizmanın oluşuma ilişkin bilgileri taşır.DNA molekülleri, hücre çekirdeğinde bulunurlar ve vücudumuzda bulunan tüm proteinleri oluşumu sırasındaki kodlamış bilgileri içerir.DNA’nın protein yapma işlemi ,inanılmayacak derecede kusursuzdur.

DNA’dan RNA sentezi (Transkripsiyon) :

Erkek bir canlıdan gelen spermin taşıdığı bir miktar DNA ile dişi bir canlıdan gelen yumurtanın taşıdığı DNA birleşerek tam bir DNA’yı verir. Bu DNA meydana gelecek yavrunun tüm özelliklerini içinde barındırır. Mesela bu canlının DNA’sında 1 milyar gen var ise bu genlerin 500 milyon tanesi anneden 500 milyon tanesi de babadan gelir. Yumurta ile spermin birleşmesinin ardından DNA’daki şifreler çözülerek, bir yumurta (zigot) dan bir canlıyı meydana getirmeye başlar. İlk aşama RNA sentezidir. Bu işlem DNA’nın açılmasıyla başlar. DNA’daki bazlar karşı karşıya gelip her iki omurgayı birleştirmişlerdi. Fakat bu bazlar aralarındaki bağları kopararak DNA’nın çift zincirli yapısını tıpkı bir “fermuar” gibi açmaya başlar. DNA çözülmeye başladıkça “RNA polimeraz” adı verilen özel bir protein DNA’nın üzerinde gezerek onu okumaya ve RNA’yı sentezlemeye başlar.

Şekilde DNA çözülmüş bir vaziyette görülmektedir. Büyük mavi bölge RNA polimerazı temsil etmektedir. Yeşil şerit ise sentezlenen RNA’dır. DNA zinciri açılmış ve RNA polimeraz enzimi vasıtasıyla DNA’daki bazlara karşılık gelen diğer bazlar birbirlerine eklenerek RNA üretilmektedir. Üretilen RNA’nın DNA’dan tek farkı Adenin bazının karşısına Timin yerin “U” harfiyle gösterilen “Urasil” bazının gelmiş olmasıdır. Üretimi tamamlanan RNA daha sonra DNA üzerinden ayrılarak bir dizi işleme tabii tutulur.

RNA dan protein sentezi (Translasyon):

Düzeltme işlemleri tamamlanmış olan mRNA daha sonra çekirdek (nukleus) den çıkarak “Ribozom” adı verilen bir organele doğru yol almaya başlar. Ribozoma ulaşan mRNA ribozoma bağlanır. mRNA’nın bir özelliği ise DNA’daki gibi sıralanan bazların 3’lü gruplar halinde ayrılmış olmasıdır. Bir örnek verelim;

DNA üzerindeki kodonlar “AATGCCGATGTA” şeklinde ise, sentezlenen mRNA’nın görünümü “UUA-CGG-CUA-CAU” şeklinde olacaktır. Baz sıralamasında bir değişme yoktur, yalnızca bazlar 3’lü gruplar halinde taksim edilmişlerdir. Taksim edilen bu 3’lü gruplara ise “Kodon” adı verilir. Tabii RNA da adenin bazına karşılık urasil bazının, guanin bazına karşilik ise sitozin bazının geldiğini unutmamak gerekir. Bu şekilde üretilen mRNA ribozoma bağlandıktan sonra 3’lü grupların okunmasına başlanır. tRNA adı verilen bir başka RNA çeşidi ise bildiğimiz mRNA veya DNA kadar uzun değildir.

tRNA (Taşıyıcı RNA) üzerinde yalnızca 15-20 baz sırası bulundurur. TRNA’nın diğer bir özelliği ise birbiri ardına sıralanan bazların bir daire oluşturacak şekilde bağlanmasıdır. Bunu halay çeken bir grup insana benzetebiliriz. tRNA halkasının üzerinde iki önemli bölge vardır. Bu bölgelerden ilki, taşıyacağı aminoasitin tanınmasını sağlayan bölgedir. Diğer bölge ise tRNA’nın mRNA’ ya bağlanacağı, 3 adet baz sırasından oluşan bölgedir. Bu bölgeye ise “Anti-kodon” adı verilir. tRNA üzerinde bulunan, “anti-kodon” adı verilen ve yalnızca 3 adet baz sırasından oluşan bu bölge, ribozoma tutunmuş mRNA üzerindeki “kodon” adı verilen 3’lü gruplara bağlanır.

Tabii tRNAların anti-kodonları, mRNA üzerindeki kodonlara sırasıyla bağlanırken beraberlerinde taşıdıkları aminoasitleri de getirmişlerdir. Bu yüzden tRNA’ya “Aminoasiti taşıyan RNA” adı verilmiştir. tRNAlar aminoasitleri taşıyıp sırasıyla kodonlara bağlandıkça, tRNAların sırtlarındaki aminoasitlerde birbirleriyle bağlanmaya başlarlar. Aşağıdaki şekilde mRNA (messenger RNA) daki kodonlardan birisine bağlanmakta olan bir tRNA görülüyor. Görüldüğü gibi mRNA’daki kodonun baz dizilimi GCC, bu kodona bağlanan tRNA’nın ise anti-kodonu CGG şeklindedir.
tRNA üzerinde bulunan pembe halka ise “aminoasit”i temsil etmektedir.

Yüzlerce binlerce tRNA yan yana dizildiklerinde, üzerlerindeki aminoasitlerde yan yana gelmiş olur. İşte yan yana gelmiş olan bu aminoasitler birbirleriyle bağ yaparak proteini sentez etmeye başlar.

Yukarıda anlatılan olayları aşağıdaki şekil gayet iyi açıklamaktadır. Sağ tarafta yaklaşmakta olan mavi renkli tRNAlar görülüyor. tRNAların üzerlerinde ise yeşil ve sarı renklerle gösterilmiş “aminoasit” ler görülüyor. Yeşil renkli şerit mRNA’yı, boynuzlu gri yapı ise ribozomu temsil etmektedir.
tRNAlar sırasıyla mRNA üzerine yerleştikten sonra, sırtlarındaki aminoasitler bağ yapar. Tam bu sırada işi biten tRNA yükünü boşaltmış olarak mRNA’dan bağını koparır ve ribozomdan ayrılır.

Fakat taşıdığı aminoasit, kendinden önceki tRNA’nın getirdiği aminoasitle bağ yapmış olarak protein zinciri oluşumuna katılır.
Proteini üretilen hücrenin farklılaşması
Buraya kadar olan aşamalar hücrede protein sentezi için gerekli işlemleri kapsıyordu.Bundan sonra ise üretilen proteinin çeşidine göre hücrenin kazandığı fonksiyondur. Bir yumurta ile bir spermin birleşmesiyle meydana gelen yapı zigot adını alır ve tek bir hücreden ibarettir.

Zigot içerisinde DNA kendisinin bir kopyasını çıkarır. Dolayısıyla hücrede DNA miktarı iki katına çıkmış olur. Fakat hücre derhal bölünmeye başlar bu DNAlardan birisi bir hücreye giderken diğer DNA ise ikinci yavru hücreye aktarılır.Böylelikle hücre ikiye bölünmüş olur. Bölünmeler ta ki anne karnında bir bebeğin meydana gelmesine dek sürer. Yani tek bir hücre, o kadar çok bölünme geçirir ki sayıları trilyonları bulur ve bir canlı embriyoyu (anne karnındaki bebek) meydana getirir. DNA şifrelemesi ise bu noktada devreye girer.
Bir önceki basamak protein sentezi ile ilgiliydi. Fakat proteinler çeşitli hücreler için farklı tiplerde üretilir. Bir yavru anne karnında gelişirken, yavrunun gözlerini oluşturacak hücrelerdeki DNAlar yalnızca göz organı ile ilgili proteinleri üretirler. Aynı şekilde yavrunun beynini oluşturacak hücrelerin DNAları ise yalnızca beyin organı ile ilgili proteinleri üretirler. Burada önemli olan nokta şudur; insanın kemik hücresi olsun, karaciğer hücresi olsun, böbrek hücresi olsun kısacası vücudunun her bölgesindeki hücrelerin içindeki DNAlarda insanın bütün organlarını oluşturacak bilgiler saklıdır.

Fakat saklanan bu bilgilerden yalnızca ilgili organ için üretilecek proteinlerin meydana getirilmesi sağlanır. Yani her hücrede insan vücudunun her organının protein bilgileri saklanır fakat bu proteinlerin hepsi üretilmez. Yalnızca meydana getirilecek organla ilgili proteinler üretilir.Bir organda, organla ilgili proteinler dışında DNA da saklanan diğer proteinlerin üretilmemesi için DNA nın üzeri “Histon” adı verilen özel bir proteinle örtülür.
Hücrelerin programlanmış bir şekilde farklı farklı proteinler üretip farklı organlara dönüşmesi olayına farklılaşma (morfogenez) denir. Bugün bilim adamlarının kafasını kurcalayan en büyük problem ise hücrelerdeki “Histon” ların hangi genlerin üzerini örtüp hangilerinin üzerini açık bırakacağını nereden bildiğidir.

Dna’nın Yapısı – Biyofizik

DNA’nın Yapısı – Biyofizik
DNA’nın Yapısı Nedir – DNA’nın Yapısı Hakkında – DNA’nın Yapısı Konu Anlatım

DNA yapısı, hem tek iplikli hem çift iplikli DNA’da çeşitli biçimler gösterir. Hücreler için DNA’nın yapısıyla ilişkili olan DNA’nın mekanik yapısı hücreler için önemli bir sorun yaratır. DNA’nın okunması veya ona bağlanmasıyla ilgili her hücresel süreç, onun tanınması, paketlenmesi veya değişime uğratılmasına etki edecek şekilde onun mekanik yapılarını ya kullanır ya da değiştirir. DNA ‘nın aşırı uzunluğunun (bir kromozomdaki DNA’nın uzunluğu 10 cm’yi bulabilir), onun sertliğinin ve sarmal yapısının bir sonucu olarak, hücre DNA’sının düzenlenebilmesi için histon gibi yapısal proteinler ve topoizomeraz ve helikaz gibi enzimler evrimleşmiştir. DNA’nın özellikleri onun moleküler yapısı ve dizisi ile yakından ilişkilidir. Özellikle DNA ipliklerini birbirine bağlayan hidrojen bağları ve elektronik etkileşimlerin, her bir iplikteki bağların kuvvetine kıyasla olan zayıflığı, bu ilişkide önemli bir rol oynar.

DNA’nın mekanik yapısını doğrudan ölçebilen deneysel teknikler nispeten yenidir ve çözelti içinde yüksek çözünümlü görüntüleme genelde zordur. Buna rağmen, bilimciler bu polimerin mekanik özellikleri hakkında büyük miktarda veri üretmişlerdir ve DNA’nın mekanik özelliklerinin hücresel süreçlere olan etkileri halen aktif olarak araştırılmakta olan bir konudur.

Çoğu hücrede bulunan DNA’nın uzunluk bakımından mikroskobik olduğunu belirtmek önemlidir — her bir insan kromozomundaki DNA birkaç santimetre uzunluğundadır. Dolayısıyla, hücreler DNA’yı içlerinde taşıyabilmek için onu sıkıştırmak veya “paketlemek” zorundadırlar. Ökaryotlarda, histon olarak adlandırılan makara gibi proteinler etrafından DNA’nın sarılması ile bu gerçekleşir. Bu DNA-protein kompleksinin daha da çok sıkıştırılması sonucu mitoz bölünme sırasında görülen kromozom yapıları meydana gelir.

Yapı belirlemesi

DNA yapılarının belirlenmesi nükleer manyetik rezonans veya X-ışını kristalogafisi teknikleri ile yapılır. A-DNA ve B-DNA’nın X-işini kırınım örüntülerinin ilk yayımlanan raporları Patterson transformlarına dayanan analizler kullanmış, bunlar buzağı timüs DNA’sının yönlendirilmiş lifleri için sınırlı miktarda yapısal bilgi sağlamışlardı. 1953′te Wilkins ve çalışma arkadaşları, bakteri ve alabalık sperm DNA’sının sulandırılmış (hidrate) ve yönlendirilmiş liflerindeki B-DNA’nın X-ışını kırınım ve saçılım örüntüleri için alternatif bir analiz yöntemini önerdiler, Bessel foksiyonlarının kareler toplamını kullanmak yoluyla. `B-DNA biçimi’ hücre içindeki şartlarda en yaygın olmakla beraber, aslında bu iyi tanımlanmış bir üç boyutlu yapı (konformasyon) değil, canlı hücrelerin çoğunda bulunan sulanma seviyelerinde görülen bir DNA konformasyonlar ailesi veya konformasyonlar bulanık kümesidir (fuzzy set). Bunlara karşılık gelen X-ışını kırınım ve saçılım örüntüleri, önemli oranda (>%20) bir düzensizlik içeren moleküler parakristallere özgündür, ve bu yüzden standart analiz yöntemleri kullanılarak bunların yapıları çözülemez.

Buna karşın, Bessel fonksiyonlarının Fourier transformu ve DNA moleküler modelleri kullanılarak yapılan standart analizler, A-DNA ve Z-DNA’nın X-ışını kırınım örüntülerinin anlaizinde rutin olarak hâlâ kullanılmaktadır.

Baz çifti geometrisi

Bir baz çiftinin geometrisi 6 koordinat ile tanımlanabilir: yükselti, burulma, kayma, ötelenme, yatıklık ve yalpa (İngilizce rise, twist, slide, shift, tilt, ve roll). Bu değerler DNA molekülündeki her bir baz çiftinin uzaydaki konum ve doğrultusunu, sarmalda kendisinden bir evvelkine göreli olarak tam olarak tanımlar. Bunlar topluca molekülün sarmal yapısını tanımlarlar. Bir DNA molekülünde normal yapının bozulmuş olduğu bölgelerde bu değerler bozulmayı betimlemek için kullanılır.

Herbir baz çifti için aşağıdaki parametreler de tanımlanmıştır:

Pervane burulması(Propeller twist)
Aynı baz çiftindeki bir bazın düzleminin diğerinin düzlemine göre açısı
Öteleme (Shift)
Baz çifti düzleminde bir bazın ötekine göre kayma oranı, küçük oyuktan büyük oyuk doğrultusunda.
Eğim(Tilt)
Bu eksen etrafındaki dönme.
Kayma (Slide)
Baz çifti düzleminde bir iplikten ötekine doğru kayma.
Baz çift düzlemini uzun ekseni etrafında dönmesi (Roll)
rotation around this axis.
Yükselme (Rise)
sarmal ekseni boyunca ötelenme.
Burulma (Twist)
sarmal ekseni etrafında dönme.
Hatve (Pitch)
Sarmalda bir tam dönüşteki baz çifti sayısı

Yükselme ve burulma, sarmalın elliliğini ve hatvesini belirler. Diğer parametreler sıfıra eşit olabilir. Kayma ve ötelenme, B-DNA’da tipik olarak küçük değerlerdir ama A- ve Z-DNA’da büyük değerlere sahip olabilir. Yatıklık ve yalpa, ardışık baz çiftlerinin daha az paralel olmasına neden olur ve bunlar tipik olarak küçük değerlerdir. Bu parametreler hakkında bir şekil, 3DNA Web sitesinde görülebilir.

Bilimsel literatürde yatıklık (İngilizce “tilt”) başka bir anlamda da kullanılabilir; ilk baz çifti ekseninin, sarmal eksenine olan diklikten olan sapması için de bu terim kullanılabilir. Bu anlam, ardışık iki baz çifti arasındaki kaymaya karşılık gelir ve sarmal-tabanlı koordinatlarda daha uygun olarak “eğim” (İng. “inclination”) olarak belirtilir.

DNA sarmal geometrileri

Doğada üç DNA üç boyutlu yapısı (konformasyonu) olduğu düşünülmektedir, bunlar A-DNA, B-DNA, ve Z-DNA olarak adlandırılırlar. James D. Watson ve Francis Crick tarafından betimlenmiş olan “B” biçiminin hücrelerde hakim biçim olduğu görüşü yaygındır. 23,7 Å genişliğindedir ve 10 baz çifti için 34 Å uzanır. Çifte sarmal her 10,4-10,5 baz çifti için bir tam dönüş yapar. Bu burulma sıklığı (sarmal hatvesi), her bir bazın komşularına yaptığı istifleme (İng. stacking) güçlerine bağlıdır.

Başka konformasyonlar da olasıldır; A-DNA, B-DNA, C-DNA, D-DNA, E-DNA, L-DNA(D-DNA’nın enatiomerik yapısı), P-DNA, S-DNA, Z-DNA, v.s. tanımlanmıştır. Gelecekte keşfedilebilecek DNA konformasyonları için F, Q, U, V, ve Y harfleri kalmıştır. Ancak bu biçimlerin çoğu suni olarak yaratılmış ve doğal olarak, biyoloji sistemlerde gözlemlenmemiştir.

DNA’nın bir diğer yapı tipi, üç sarmallı DNA’dır.

A- ve Z-DNA

A ve Z-DNA, geometrileri bakımından birbirlerinden önemli derecede farklılık gösterirler ama ikisi de sarmal yapılıdırlar. A yapısı, sadece su kaybetmiş (dehidrate) DNA örneklerinde (kristalografik deneylerde olduğu gibi) ve belki DNA-RNA ipliklerinin hibrit eşleşmelerinde görülebildiği muhtemel sayılmaktadır. Hücrelerde DNA’nın metilasyona uğramış kısımları Z-DNA geometrisini sahip olabilir. Ayrıca bazı protein-DNA komplekslerinin Z-DNA yapıları oluşturduğuna dair deliller vardır.

  • A-, B-, ve Z-DNA’nın yapıları.

  • A-, B-, ve Z-DNA’ın sarmal eksenleri.

DNA’nın üç ana biçiminin yapısal özellikleri Geometrik özellikleri A-DNA B-DNA Z-DNA
Sarmal yön sağ elli sağ elli sol elli
Tekrarlayan birim 1 bp 1 bp 2 bp
Dönme/bç 33.6° 35.9° 60°/2bp
Ortalama bç/dönme 10.7 10.0 12
Bç’nin eksene eğimi +19° -1.2° -9°
Eksen boyunca yükselme/bç 2.3 Å 3.32 Å 3.8 Å
Hatve/sarmal dönmesi 24.6 Å 33.2 Å 45.6 Å
Ortalama pervane burulması +18° +16° 0°
Glikosil açı anti anti C: anti,
G: syn
Şeker büzülmesi (İng. pucker) C3′-endo C2′-endo C: C2′-endo,
G: C2′-exo
Çap 25.5 Å 23.7 Å 18.4 Å

Süpersarımlı DNA

DNA’nın B biçimi her 10,4-10,5 bç bir tam dönüş yapar, torsiyon gerilimi olmayınca. Ancak, çeşitli biyolojik süreçler torsiyon gerilimi yaratır. Aşırı veya eksik sarmal gerilimli bir DNA parçasına pozitif veya negatif “süpersarımlı” olarak değinilir. Hücrelerdeki DNA tipik olarak negatif süpersarımlıdır, onun böyle olması ikili sarmalın çözülüp (eriyip) transkripsiyonun olmasını sağlar.

Sarmal olmayan biçimler

DNA’nın sarmal olmayan biçimleri de betimlenmiştir, örneğin yanyana ve üçlü sarmal biçimleri. Tek iplikli DNA, DNA ikilenmesi sırasında veya ısı ile DNA ipliklerinin ayrışması sonucu meydana gelir.

DNA bükülmesi

DNA göreceli olarak rijit bir polimer sayılır, Solucanvari zincir olarak modellenir. Üç önemli serbestlik derecesi vardır: bükülme, burulma ve sıkışma. Bunların her biri DNA’nın hücre içindeki yetenkelrine belli sınırlamalar getirir. Burulma/torsiyonal tutukluğu, DNA’nın halkasallaşmasına ve DNA’ya bağlanan proteinlerin birbirlerine göreceli doğrultusuna etki eder. Bükülme/eksensel tutukluğu DNA’nın sarılmasına, onun halkasllaşmasına ve proteinlerle etkileşimine etki eder. Sıkışma (kompresyon)/uzama ise yüksek gerilme hâli dışında nispeten önemsizdir.

Süreğenlik uzunluğu/Eksensel katılık

Çözeltideki DNA’nın rijit bir yapısı yoktur, termal titreşimler ve su molekülleri ile çarpışmalar nedeniyle sürekli değişen bir konformasyona sahiptir ve bu yüzden rijitliğin klasik ölçümleri mümkün değildir. Dolayısıyla DNA’nın bükülmezliği onun süreğenlik uzunluğu ile ölçülür, bunun tanımı şöyledir:

“polimerin zamana-bağllı ortalama doğrultusunun e faktörü ile bağıntısız (ilintisiz) olduğu DNA uzunluğu”

Bu değer atomik kuvvet mikroskobu ile farklı uzunlukta DNA moleküllerini görüntüleyerek doğrudan ölçülebilir. Sulu çözeltilerde ortalama süreğenlik uzunluğu 46-50 nm veya 140-150 baz çiftidir (DNA’nın çapı 2 nm’dir), ama bu değer büyük çeşitlilik gösterebilir. Bu tanıma göre DNA orta derecede rijit bir molekül sayılır.

DNA’nın belli bir kısmının süreğenlik uzunluğu kısmen onun dizisine bağlı olduğu için büyük bir varyasyon gösterebilir. Bu varyasyon büyük ölçüde baz istiflenme enerjisinde ve küçük ve büyük oluklara uzanan bazlardan kaynaklanır.

Örnek diziler ve süreğenlik uzunlukları (B-DNA) Dizi Süreğenlik uzunluğu
/baz çifti
Rastegele 154±10
(CA)tekrarı 133±10
(CAG)tekrarı 124±10
(TATA)tekrarı 137±10

DNA bükülmesinin modelleri

DNA’nın entropik esnekliği standart polimer fiziği modelleri (Kratky-Porod solucan benzeri zincir modeli gibi) ile dikkate değer derecede uyumludur. Solucan benzeri zincir modelinin öngördüğü gibi, küçük (picoNewton-altı) kuvvetlerde Hooke kanunu tarafından betimlenir. Ancak, süreğenlik uzunluğunundan kısa uzunlukta DNA parçalarında bükülme kuvveti yaklaşık sabittir ve davranışı, solucan benzeri zincir öngörülerinden sapma gösterir. Bunun sonucu olarak küçük DNA molekülleri kolay halkalaşır ve DNA’da çok bükük kısımların bulunma olasılığı daha yüksektir.

Baz basamaklarının istiflenme stabilitesi (B DNA) Basamak İstiflenme ΔG
/kcal mol-1
T A -0.19
T G or C A -0.55
C G -0.91
A G or C T -1.06
A A or T T -1.11
A T -1.34
G A or T C -1.43
C C or G G -1.44
A C or G T -1.81
G C -2.17

Bükülme tercihleri

DNA moleküllerinin bükülmesine tercihli yönler vardır, yani DNA anizotropik bükülme gösterir. Bunun nedeni DNA dizisini oluşturan bazların özellikleridir; rastgele bir dizinin tercihli bir bükülme yönü yoktur.

Tercihli DNA bükülmesi, her bazın komşusu üzerinde istiflenmesinin stabilitesi tarafından belirlenir. Eğer kararsız baz istiflenmesi DNA sarmalının hep aynı tarafında yer alırsa DNA o yöne doğru bükülür. Bükülme açısı artınca sterik engeller ve bazların birbirine göre yuvarlanması da bükülmede rol oynar, özellikle küçük olukta. A ve T bazları bükülmelerin iç tarafında küçük olukta tercihen bulunurlar. Bu etki özellikle DNA-protein bağlanması sonucu sıkı bükülmenin oluştuğu yerlerde görülür, nükleozom taneciklerinde olduğu gibi. Yukarıdaki tabloda baz çarpıtmalarına (distorsiyonlarına) bakınız.

İstisnai bükülme tercihi olan DNA molekülleri içsel olarak büküktürler. Bu olgu ilk defa tripanozomlardaki kinetoplast DNA’sında gözlemlenmiştir. Buna neden olan tipik DNA dizileri 4-6 T ve A bazından oluşan bölümler ve bu bölümleri DNA’nın hep aynı tarafındaki küçük oluğa rastlatacak şekilde aralarda G ve C-zengini bölümlerdir. Örneğin:

| | | | | |
G A T T C C C A A A A A T G T C A A A A A A T A G G C A A A A A A T G C C A A A A A A T C C C A A A C

Bu içsel olarak bükük yapıda baz çiftlerindeki ‘pervane burulması’ meydan gelir, yani baz basamakları arasında anormal çatallaşmış Hidrojen bağları oluşabilir. Yüksek sıcaklıklarda bu yapı ve onun neden olduğu içsel büküklük kaybolur.

Anizotropik olarak bükülen her DNA’nın süreğenlik uzunluğu ortalamadan daha fazladır ve eksensel bükülmezliği daha çoktur, yani rastgele bükülme olasılığı daha düşüktür.

DNA halkalaşması

DNA halkalaşması molekülün hem eksensel (bükülme) sertliği hem de torsiyonal (dönel) sertliği ile ilişkilidir. Bir DNA molekülünün başarılı bir şekilde halkalaşabilmesi için tam halka olabilecek kadar uzun olması gerekir; buna ilaveten, kovalent bağların oluşabilmesi için uçtaki bazların doğru açıya sahip olması gerekir, bunun için de molekülde doğru sayıda baz bulunması gerekir. DNA halkalaşması için optimal uzunluk 400 baz çiftidir (136 nm uzunluk), DNA sarmalındaki dönmelerin sayısı tam sayı olmak zorundadır. Dönme sayısı tam sayı değilse halkalaşmak için hatırı sayılır bir enerji bariyeri yaratır; örneğin 10,4 x 30 = 312 baz çiftli bir molekül 10,4 x 30,5 ≈ 317 baz çiftli bir molekülde yüzlerce kere daha hızlı halkalaşır.

DNA uzaması

Uzun DNA parçaları gerilim altında entropik olarak elastiklik gösterirler. DNA çözeltideyken, solventte bulunan enerjiyle ilişkili olarak sürekli yapısal varyasyonlar geçirir. Bunun nedeni, moleküldeki ısıl (termal) titreşimler ve, buna ek olarak, su molekülleri ile olan sürekli çarpışmalardır. Entropik nedenlerden dolayı, sıkışık ama gevşek olan yapılar ısının bu etkilerine daha duyarlıdır, uzamış yapılara kıyasla, ve bu nedenle DNA molekülleri evrensel olarak karışık ve gevşek yapılara sahiptir. Bu nedenle tek bir DNA molekülü kuvvet etkisiyle uzayıp düzleşir. Optik cımbız kullanarak DNA’nın entropik uzama davranışı incelenmiş ve fizyolojik sıcaklıklarda Kratky-Porod solucan benzeri zincir modelindeki gibi davrandığı bulunmuştur.

Yeterli gerilim ve pozitif buru (tork) etkisi altında DNA bir faz değişmesi (evre geçişi) gösterir, bazlar dışarı, fosfatlar içeri döndüğü öne sürülmüştür. Bu aşırı gerilmiş DNA için önerilen yapı “P-biçimli DNA” olarak adlandırılmıştır, DNA’nın yapısı daha bilinmezken bu yapıyı önermiş olan Linus Pauling’e atfen.

DNA’nın sıkıştırılıncaki mekanik yapısı betimlenmemiştir, polimerin sıkıştırıcı kuvvet altın bükülmesini engellemenin teknik zorluklarından dolayı.

DNA ergimesi

DNA ergimesi, ikili sarmalın iplikleri arasındaki etkileşimlerin bozulup iki ipliğin ayrışması sürecidir. Bu bağlar zayıftır, hafif ısıtma, enzimler veya fiziksel kuvvet ile kolayca kırılırlar. DNA erigimesi tercihli olarak DNA üzerinde belli noktalarda meydana gelir. T ve A zengini diziler, C ve G zengini dizilere kıyasla daha kolay ergir. Belli baz basamakları da DNA ergimesine daha müsaittir, özellikle TA basmaklar ve TG baz basamakları. Bu mekanik özellikler, çoğu genin baş tarafında bulunan TATAA dizisinin varlığını açıklar; bu dizinin kolay ergiyebilir olması, RNA polimerazın transkripsiyona başlamak için DNA ipliklerini ayırmasını sağlar.

Hafif ısıtma ile ipliklerin ayrılması, polimeraz zincir tepkimesinde (PCR) olduğu gibi, eğer molekül 10.000 baz çiftinden (10 kilobaz çifti veya 10 kbç) küçük ise basittir. DNA ipliklerinin birbirine sarılmış olması uzun DNA ipliklerinin birbirnden ayrılmasını güç kılar. Hücre bu sorunun üstesinden gelmek için topoizomerazlarla beraber çalışan DNA ergitme enzimleri (helikazlar) kullanır. Topoizomerazlar iki iplikten birinin şeker-fosfat omurgasını kimyasal olarak keserek DNA’nın öbür ipliği etrafında dönmesini sağlar. Helikazlar ipliklere çözerek DNA polimeraz gibi dizi okuyucu enzimlerin ilerlemesini sağlar.

Baz basamaklarının ergime stabilitesi (B DNA) Basamak Ergime ΔG
/Kcal mol-1
T A -0.12
T G or C A -0.78
C G -1.44
A G or C T -1.29
A A or T T -1.04
A T -1.27
G A or T C -1.66
C C or G G -1.97
A C or G T -2.04
G C -2.70

DNA topolojisi

Hcredeki çoğu DNA topolojik olarak kısıtlanmıştır. DNA ya kapalı halka şeklindedir (prokaryotlardaki plazmitler gibi) ya da çok uzun moleküllerdir ki, bunlar, düşük difüzyon katsayısı yüzünden bunlar fiilen topolojik olarak kapalı bölgeler meydana getirir. DNA’nın lineer kısımları da çoğu zaman membranlara bağlı proteinler tarafından bağlıdır ve bunun sonucu topolojik anlamda kapalı halkalar oluşur.

Francis Crick DNA süpersarımlarında bağlantı sayısının önemini ilk öneren kişilerden olmuştur. 1976′da yayımlanan bir makalede, Crick problemi dile getirmiştir

DNA topolijisinin analizinde üç değer kullanılır:

L = Bağlantı sayısı (İng. linking number) Bir DNA ipliğinin öbürü etrafında kaç kere döndüğünün sayıs. Kapalı bir halka için bu bir tam sayıdır, kapalı bir topolojik bölge için de bu sabittır.
T = burulma (İng. twist) İki iplikli DNA sarmalındaki toplam dönüş sayısı. Normalde bu sayı DNA çözeltide serbest bulunduğu zamanki dönüş sayısına eşittir, yani, baz sayısı/10,4
W= burkulma

L = T + W ve ΔL = ΔT + ΔW

Kapalı bir topolojik bir bölgede T’deki bir değişme, W’deki bir değişme ile dengelenmek zorundadır ve bu ilişkinin tersi de doğrudur. Bunun sonucu DNA’nın üst düzey yapısı oluşur. Burkulma sayısı 0 olan halkasal bir DNA molekülü halkasaldır. Eğer molekülün burulması süpersarım yapılarak azaltılır veya artırılırsa, burkulma da uygun şekilde değişir, öyleki molekülde simitsi veya çubuksu süpersarmal bir sarım meydana gelir.

Eğer çift iplikli sarmal DNA’nın uçları birleştirilip bir alka oluşursa iplikler topolojik anlmada düğümlenmmiş olurlar. bu demektir ki, iplikler kesilmeden birbirlerinden ayrılamazlar; ısıtmak DNA’yı ergitse dahi, iplikler gene de birbirleri etrafında sarılı durumda kalırlar. Topolojik olarak bağlı ipliklerin düğümünün çözülmesi için topoziomeraz denen enzimler gerekldir. Bu enzimler halkasal DNA’nın düğümlü halini çözmek için ipliklerin ibri veya ikisini birden keseler, öyle ki başka bir tek veya iki iplikli DNA parçası onun içinden geçebilsin. Bu düğüm çözümü halkasal DNA’nın (veya topolojik olarak benzer şekilde kıstlanmış doğrusal DNA’nın) ikilenmesi ve çeşitli rekombinasyon tiplerinde gereklidir.

  • Az bükülmeli DNA moleküllerinin süpersarımlı yapısı. DNA ikilisinin sarmal özelliği gösterilmemiştir, şekli basit tutmak için.

Bağlantı sayısı paradoksu

Yıllar boyunca ökaryotik genomlardaki süpersarılımın kaynağı gizemli kalmıştır. Bu topolojik bilmece bazılarınca “bağğlantı sayısı paradoksu” olarak adlandırılmıştı. Ancak, nükleozomun yapısı çözülünce ve onun etrafında sol-elli aşırı burulmuş bir DNA olduğu görülünce bu “paradoks” çözülmüştür.

Kromozomun Yapisi

KROMOZOMUN YAPISI

Bitkilerde ve hayvanlarda her tür kendine özgü sabit sayıda kromozom içerir. Kromozomların sayısı mitoz bölünmedeki düzenli ve kesin olaylarla sabit tutulur. Bir çok hayvan ve bitkide kromozom sayısı eşittir. Fakat kromozomlardaki kalıtım faktörleri farklıdır.
İlk defa 1840 yılında botanikci HOFMEISTER tarafından Tradescantia bitkisinin polen hücrelerinde görülmüş ve 1888 yılında WALDEYER tarafından da kromozom adı verilmiştir.

Hiçbir zaman yeniden yapılmazlar, ya eskiden var olan kromozomların bölünmesinden ya da tamamlama sentezleri ile yapılırlar. Yaşamın sürekliliği kromozomların devamlılığına dayanır. Her canlıda kromozomların şekli farklı olmasına karşın aynı türde aynı kromozomların şekilleri birbirine benzerdir.
Örneğin; 3. kromozom bir türde aynı şekle sahip olmasına karşılık, yine aynı türde 3. ile 8. kromozomların şekilleri birbirinden farklıdır. Sayıları türden türe faklı olur. Sayısı ile organizasyonu arasında herhangi bir bağlantı yoktur. Küçük bir kromozom daha fazla gen taşıyabilir. Örneğin, Ascaris megalocephala univelans’de 2n = 2 (bilinen en az sayıda kromozom taşıyan canlı), Drosophila melanogaster’de2n = 8, insanda 2n = 46, keçide 2n = 60, bir tür istakozda 2n = 200, Ophyoglossum vulgatum (bir çeşit eğrelti otu)’ 2n = 500 (canlılar arasında bilinen en fazla kromozom sayılı bitki) kromozom vardır. Normal vücut hücreleri anadan ve babadan gelen birer kromozom takımına sahiptir. Ana ve babadan gelen eş kromozomların şekilleri ve büyüklükleri (eşey kromozomları hariç) birbirne eşittir. Bu çift kromozom takımı bütün vücut hücrelerinde bulunur. Böyle hücrelere somatik hücreler adı verilir. Kromozom sayısı bakımındanda diploittir denir ve 2n ile gösterilir. Fakat eşey hücrelerinde, ergin gametlerde ve bazı ilkel canlıların bütün hayat devrelerinde (yalnız zigot halinde diploid) kromozomlar eşlerinden yoksundur. Partenogenetik çoğalan bazı hayvanlarda, örneğin, erkek arılarda, vücut hücrelerinin kromozom sayısı dişilerinin somatik hücrelerindekinin yarısı kadardır. Ya erkek ya da dişi eşey kromozomunu bulunduranlara germinatif hücreler denir. Eşi olmayan kromozomlara da haploid denir ve “n” simgesiyle gösterilir. Kromozom sayısı sabit olmakla birlikte bazı özelleşmiş hücrelerde, örneğin, böceklerin, özellikle bazı sineklerin tükrük bezlerinde bu sayı 2n’nin katları şeklinde bir artış gösterir. Burada kromozomlar çekirdek zarı parçalanmaksızın çoğalırlar. Buna endomitozis ve kromozom durumuna da poliploidi denir. Çekirdek büyüklüğü kromozomların miktarına bağlı olduğundan, poliploidide çekirdek hacminde büyüme görülür.

Normal bir hücrede kromozomlar gözükmez. Profazın başlangıcından başlayarak gittikçe yay şeklinde kıvrılan ve kalınlaşan ince kromatin ağı şeklindedir. Sonunda türlere özgü şeklini alıncaya kadar kıvrılma devam eder. Dinoflagellata’da kromozomlar her zaman gözükür. Çünkü bunlarda çekirdek zarı yoktur ve DNA bazik proteinlere bağlı değildir. Bu tip hücrelere mezokaryotik hücreler denir. Bir kromozomu kaba taslak dıştan incelersek şu kısımlar görülür. Aralarında genel olarak açı bulunan iki koldan oluşur. Kollar primer boğumla birbirinden ayrılmıştır, buna sentromer (=kinetokor) denir. İki kolu birbirine eşit olan kromozomlara :-):-):-):-)sentrik, eşit olmayanlara ise sup:-):-):-):-)sentrik denir. Bir kollu gibi görünenlere akrosentrik (bunların sentromerleri kromozomun ucundadır) kromozom denir. Bazı hayvan grupları bu üç tipten yalnız birine sahiptir. Örneğin amfibiler yalnız :-):-):-):-)sentrik kromozomlara sahiptir.

Kromozomlar üzerinde primer (birincil) boğumlardan başka, sekonder (ikincil) boğumlarda bulunabilir. Bazen (genellikle) kromozomun uç kısmında uydu (stallit) denilen yuvarlak ya da uzunca bir yapı bulunur. Uydu, kromozoma ince bir kromatin ipliğiyle bağlıdır. Bu tip kromozomlara SAT kromozomlar denir. Sentromerler kromozomun iğ ipliğine takılmasını sağlar. Sentromeri olmayan bir kromozom bölünmeye katılamaz. ve tasfiye olur. Bu boğulma yerlerinde bulunan genler, rRNA’ları ve dolayısıyla çekirdekcikleri organize ederler. Bu genler çok defa yüzlerce kopya halinde bulunur ve buna gen amplifikasyonu ya da redunanz denir. Kromozomların uçlarına da telomer denir.

Dna Ve Rna Nın Yapı Şekli

RNA-DNA

RİBONÜKLEİK ASİT (RNA)

RNA’lar ribonukleotitlerinbirbirlerine bağlanması ile meydana gelen tek zincirli nukleik asitlerdir. DNA molekülleri ile kıyaslandığı zaman boyları daha kısadır. Hemen hemen bütün hücrelerde bol olarak bulunmaktadırlar. Gerek prokaryotik gerek ökaryotik hücrelerde genellikle üç ana sınıf RNA’ya rastlanmaktadır. Bunlar mesencır RNA (mRNA), ribozomal RNA (rRNA) ve transfer RNA (tRNA) dır. Bütün RNA’lar tek zincirli özel bir baz dizisine, karakteristik bir molekül ağırlığına sahip ve belirli bir biyolojik fonksiyonu yerine getirmektedir.

MESENCIR RNA (mRNA)

DNA’da saklı bulunan genetik bilginin, protein yapısına aktarılmasında kalıplık görevi yapan aracı bir moleküldür. mRNA ribozomlara tutunur ve DNA’dan aldığı genetik şifreye göre sentezlenecek proteinin amino asit sırasını tayin etmektedir. Her mRNA molekülü, DNA üzerinde bulunan ve gen adı verilen belirli bir bölge ile komplementerlik göstermektedir. Tek bir ökaryotik hücre yaklaşık 10.000 farklı mRNA molekülü ihtiva etmekte ve bunların her birinden bir veya daha fazla polipeptid zinciri sentezlemektedir.

TRANSFER RNA (tRNA)

tRNA’lar da ribonukleotidlerin polimerize olması ile meydana gelmiş, çok kıvrımlar gösteren ve tek zincirli yapıya sahip bir RNA çeşididir. tRNA’lar yonca yaprağına benzeyen üç boyutlu yapılarında yer yer çift sarmallı bir durum göstermektedir. Zincirde yer alan ribonukleotid sayısı 70 ile 99 arasında, molekül ağırlığı ise 23.000 ile30.000 dalton arasında değişmektedir. Doğada yer alan 20 aminoasitin her biri için en az bir tRNA molekülü bulunmaktadır. tRNA’lar adaptörlük görevi yaparak bir uçlarına bağladıkları amino asiti, ribozoma tutunmuş mRNA’nın taşıdığı kodono göre polipeptid zincirine dizerler. tRNA’lar üç bazdan meydana gelen antikodon adı verilen uçları ile yine mRNA üzerinde bulunan ve kodon adı verilen bölgeye geçici bağlanarak amino asitlerin mRNA üzerindeki şifreye göre doğru bir şekilde dizilmelerini temin etmektedir.

RİBOZOMAL RNA (rRNA)

rRNA’lar ribozomların ana yapısal elementi olup yaklaşık olarak ribozom ağırlığının % 65′ini teşkil ederler. Prokaryotik hücrelerde 3 çeşit, ökaryotik hücrelerde ise 4 çeşit rRNA bulunmaktadır. Ribozomal RNA’lar ribozomların yapı ve fonksiyonlarında önemli rpller oynamaktadır.

Bunlara ilave olarak ökaryotik hücrelerde iki çeşit RNA daha bulunmaktadır. Bunlardan birincisi heterojen nuklear RNA (hnRNA)’lardır. Bunlar ökaryotik hücrede sentezlenen ve prosese uğramamış öncül mRNA molekülleridir. İkincisi ise küçük nuklear (snRNA)’dır ve yine öncül mRNA moleküllerinin prosese uğraması esnasında ortaya çıkmaktadırlar.

DEOKSİRİBONÜKLEİK ASİT (DNA)

Genetik olayların hücrede moleküler düzeydeki temeli genetik materyal görevini üstlenen nükleik asitlerin yapı ve özelliklerine dayanır. Nükleik asitlerin iki türü olan deoksiribonükleik asit DNA ve ribonükleik asit RNA temelde aynı yapısal özelliklere sahiptir.

Genler, DNA‘daki bazı kimyasal dizilimler olan nükleotidlerden meydana gelmiştir. Çoğunluk kromozomların içersinde bulunurlar. Ayrıca DNA molekülü prokaryotlarda (Bakteriler) kromozom dışı genetik sistem, olan plazmidlerde, Ökaryotik hücrelerde genetik materyalin kromozomlar (Nukleus) dışında temel olarak (hayvan ve bitkilerde) mitokondri ve (sadece bitkilerde ve alglerde) kloroplastlarda bulunduğu bilinmektedir.

1953 yılında Watson ve Crick DNA molekülünün kendine has özelliklere sahip bir çift sarmal yapı halinde bulunduğunu ileri sürdüler. Bu araştırıcıların önerdikleri DNA yapısı o tarihlerde başka araştırıcılar tarafından ortaya konulan DNA ya ilişkin önemli bulgulara dayanmaktadır. Bunlardan biri, Wilkins ve Franklin tarafından, izole edilmiş DNA fibrillerinin X-ray ışınlarını kırma özelliklerinin açıklanmasıdır. Elde edilen X ışını fotoğrafları, DNA nın zincirlerindeki bazların diziliş sırasına bağlı olmaksızın, çok düzenli biçimde dönümler yapan bir molekül olduğunu göstermektedir. Ayrıca TMV (tütün Mozaik Virusu) üzerinde yapılan çalışmalar da DNA ile ilgili çalışmalarda ışık tutmuştur.

Bir başka önemli bulguda Chargaff tarafından saptanmıştır. Herhangi bir türe ait DNA nın nükleotidlerine parçalandığında serbest kalan nukleotidlerde adenin miktarının timine, guanin miktarının da sitozine daima eşit olduğunun saptanmasıdır.. Yani Chargaff kuralı‘na göre doğal DNA moleküllerinde adeninin timine veya guaninin sitozine oranı daima 1’e eşittir. (A/T=1 ve G/C=1).

İşte Watson ve Crick bu bulguları değerlendirerek böyle özelliklere sahip DNA makro molekülünün sekonder yapısına ait bir model geliştirdiler. Bu modele göre, bir çok sorunun açıklanması yapılabildiğinden dolayı 1962 yılında bu iki bilim adamına Nobel Ödülü verildi.

Bu modele göre;
DNA molekülü, heliks (=sarmal) şeklinde kıvrılmış, iki kollu merdiven şeklindedir. Kollarını, yani merdivenin kenarlarını, şeker (deoksiriboz) ve fosfat molekülleri meydana getirir. Deoksiriboz ile fosfat grupları ester bağlarıyla birbirlerine bağlanmıştır. İki kolun arasındaki merdiven basamaklarında gelişigüzel bir sıralanma yoktur; her zaman Guanin (G), Sitozin’in (C ya da S); Adenin (A), Timin’in (T) karşısına gelir. Hem pürin (yani adenin ve guanin) ile pirimidin (yani sitozin ile timin) arasındaki hidrojen bağları, hemde diğer bağlar, meydana gelen heliksin düzgün olmasını sağlar. Pürin ve pirimidin bazları, yandaki şekerlere (Riboz), glikozidik bağlarla bağlanmıştır. Baz, şeker ve fosfat kombinasyonu, çekirdek asitlerinin temel birimleri olan nükleotidleri meydana getirmiştir. Dört çeşit nükleotid vardır. Bunlar taşıdıkları bazlara göre isimlendirilirler (Adenin, Guanin, Sitozin,Timin).

DNA molekülü kendini oluşturan nukleotidlerin sayısına bağlı olarak, büyüklüğü türden türe değişen, uzun zincir şeklinde bir yapı gösterir. İnsanda bu zincirin uzunluğu açıldığında 2 metreye kadar varabilir. Bütün halinde eldesi zincirin hassas ve kırılgan yapısından ötürü çok güçtür.

İki polinükleotid zincirin şeker fosfat omurgaları, ortak bir eksen çevresinde eşit çaplı ve sağ yöne doğru dönümler meydana getirir. Nükleotidlerin bazları molekülün omurgasının iç kısmında bulunur. Bazların konumları sarmalın eksenine 90 derece açı yapacak şekilde konumlanmıştır. Birbirine komşu baz çiftlerinin dönümleri arasındaki uzaklık 3,4A dür. Ayrıca her baz çifti komşusuna 36 derecelik açı yapacak şekilde yerleşmiştir. Buna göre, yaklaşık 10 baz çifti 360 derecelik tam bir dönümü tamamlayacağından, her dönümün boyu 34A dür.

İki polinükleotid zincirdeki nukleotidler karşılıklı olarak birbirlerine hidrojen bagları ile bağlanmıştır. Bu bağ fosfor bağları kadar kuvvetli olmadığı için pH değişikliği, s.caklık basınç gibi faktörlerde kolaylıkla birbirlerinden ayrılabilmektedir. DNA nın kendi kopyasını yapması ve gen anlatımı, nukleotidler arasındaki hidrojen bağlarının ayrılması ile gerçekleşmektedir.

Nükleotidler birbirlerine fosfat bağlarıyla bağlanarak, şeker ve fosfat kısımlarının birbirlerini izlediği serilerden oluşan bir omurgaya sahip uzun ve dallanmış polinükleotid zincirlerini meydana getirmiştir. Kovalent ester bağları veya fosfodiester bağları olarak da bilinen bu bağlar son derece kuvvetlidir. Fosfodiester bağlarının varlığı DNA molekülünün tek zincirli yapı halinde iken bile dayanıklı ve stabil yapıda olmasını sağlar. Genetik mühendisliğinin hedeflerinden biri olan klonlama çalışmaları, doğal yolla gerçekleşmesi mümkün olmayan kovalent bağ kırılmalarını gerçekleştirerek yeni türler oluşturma çabalarını içerir.

Nukleotidlerin yapısı bazik olmasına karşın oımurgadaki PO4(fosforik asit) grubunun varlığı polinükleotid zincirlerin asit özellikte olmalarına yol açar ve nükleik asit terimi de bu özellikten kaynaklanır.

Hidrojen bağları daima bir pürin(A,G) ile bir pirimidin (T,C) bazı arasından meydana gelir. A-T baz çiftinde 2 hidrojen bağı, G-C baz çiftleri arasında ise 3 hidrojen bağı bulunmaktadır. Hidrojen bağlarının özelleşmesi; anahtar kilit modelinini andıran, uygun nukleotid moleküllerinin karşılıklı gelerek birbirlerine yine uygun sayıda hidrojen bağları ile bağlanmasını sağlar. Böylece zincirin bir kolunda bulunan nukleotidlerin dizilişi,karşı kolda bulunan nukleotidlerin dizilişini bir çeşit dikte ve kontrol eder. Tesadüfe bırakmayan bir titizlikle molekül yapısı oluşturulur ve kontrol edilir.

DNA molekülünün en önemli özellik iki polinükleotid zincirin birbirinin tamamlayıcısı olmasıdır. Pozitif (+) ve negatif (–) iki polinukleotid zincirlerinin tamamlayıcılık özelliği,genetik materyalin işlevlerini doğru biçimde nasıl yapabildiğinin açıklanması açısından DNA’nın en önemli temel özelliklerinin başında gelir.

DNA çift sarmalının dikkate değer ve önemli bir özelliği, molekülü oluşturan zincirlerin birbirlerinden kolaylıkla ayrılabilmesi ve yeniden birleşebilmesidir. Protein sentezi ve Dna replikasyonu (kendi kopyasını oluşturması) bu özellik sayesinde meydana gelebilir. DNA’nın iki zinciri, birbirine sadece H bağları ve hidrofobik etkileşimlerle bağlı olmaları nedeni ile, nükleotidleri arasındaki kovalent bağlardaki herhangi bir kopma olmaksızın çözülebilir (denatürasyon). Aynı şekilde çözülmüş molekülün zincirleri tamamlayıcı bazları arasında H bağlarının oluşumu ile birleşip sarmal yapıyı yeniden oluşturabilir (renatürasyon).

Nükleotidler arasındaki fosfor bağlarının kopması nedeniyle nükleotidlerin yerine başka nukleotid veya nukleotid dizisinin geçmesi mutasyonlara yol açar.Bu mutasyonların tek zincirli RNA molekülünde oluşma olasılığı çift zincirli DNA molekülüne göre daha fazladır.Mutasyonların neticeleri ölümcül olabilir. Evrimsel gelişim içinde mutasyonların menfi yada müspet etkileri gözardı edilemeyecek noktadadır. Günümüzde viral hastalıkların başında gelen AIDS’in önüne geçilememesinin en geçerli nedeni genomu tek zincirli RNA olan virusun sürekli mutasyonlar geçirerek kendini sürekli yenilemesi gösterilebilir..

Sponsorlu Bağlantılar
Aramalar: dna\nın yapısını şema üzerinde gösterme dna\nın yapısını şema üzerinde göstererek basit bir dna modeli yapma dna nn yaps dna şekli ve kısımları dna replikasyonu şeması
Etiketler:dna yapısı dna yapisi dna nın yapısının şeması dna nı şeklive yapısal özellikleri dnanın temel yapı bileşenleri şekli dna yapısı bağları DNA yapısının şema üzerinde gösterimi dnanın yapısı dnanın sekonder yapısı dna nın yapısı şema dna yapısı vikipedi dna polinükleotid şekli dna yapısında kramozonla ilgili yazı

Bir Cevap Yazın

E-posta hesabınız yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir