Önemli Özdeşlikler Nelerdir

Sponsorlu Bağlantılar
2x4 3x2 a2 a3 alma bu kare ortak x3 y2 Önemli Özdeşlikler Nelerdir Özdeşlikler Nedir önemli özdeşlikler önemli özdeşlikler nelerdir özd..

Bazı Önemli Özdeşlikler Nelerdir?lütfen Madde Madde Yazınızz.

bazı önemli özdeşliklere maddeler arıyorum

Özdeşlikler Ve Çarpanlara Ayırma

Tanım : Sabit olmayan, birden fazla polinom un çarpımı biçimin
de yazılamayan polinomlara indirgenemeyen polinomlar denir.
Baş katsayısı bir olan indirgenemeyen polinomlar
Asal polinomlar denir.

* P(x) = x2 + 4 , Q(x) = 3×2 + 1, R(x) = 2x – 3 , T(x) = – x + 7
Polinomları indirgenemeyen polinomlar dır.

P(x) = x2 + 4 baş katsayısı 1 olduğundan asal polinom dur.

Tanım : İçindeki değişkenlerin alabileceği her değer için doğru
olan eşitliklere özdeşlik denir.

* a) x3 (x2 – 2x) = x5 – 2×4 b) a2 (x + y)2 = a2 x2 + a2 y2 özdeşlik
c) a2 (x +y)2 = a2 x2 + a2 y2 özdeşlik değildir.

ÖNEMLİ ÖZDEŞLİKLER

I) Tam Kare Özdeşliği:
a) İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
b) İki Terim farkının Karesi : (a – b)2 = a2 – 2ab + b2

İki terim toplamının ve farkının karesi alınırken; birincinin
karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.

c) Üç Terim Toplamının Karesi:
(a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc) şeklindedir.

II) İki Terim Toplamı veya Farkının Küpü :

a) İki Terim Toplamının Küpü : (a + b)3 = a3 + 3a2b + 3ab2 + b3
b) İki Terim Farkının Küpü : (a – b)3 = a3 – 3a2b + 3ab2 – b3

Birinci terimin küpü;( ) birincinin karesi ile ikincinin çarpımının 3 katı, (+) birinci ile ikincinin karesinin çarpımının 3 katı,( ) ikin
cinin küpü biçimindedir. Bu açılımlara Binom Açılımıda denir

Not:. Paskal Üçgeni kullanılarak 4.,5.,6.,…Dereceden iki terimli
lerin özdeşliklerini de yazabiliriz.A. ORTAK ÇARPAN PARANTEZİNE ALMA A(x) . B(x) ± A(x) . C(x) = A(x) .
En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.,
B. ÖZDEŞLİKLER
1. İki Kare Farkı – Toplamı

  • a2 – b2 = (a – b) (a + b)
  • a2 + b2 = (a + b)2 – 2ab ya da

    a2 + b2 = (a – b)2 + 2ab dir.
    2. İki Küp Farkı – Toplamı

  • a3 – b3 = (a – b) (a2 + ab + b2 )
  • a3 + b3 = (a + b) (a2 – ab + b2 )
  • a3 – b3 = (a – b)3 + 3ab (a – b)
  • a3 + b3 = (a + b)3 – 3ab (a + b)

    3. n. Dereceden Farkı – Toplamı
    i) n bir sayma sayısı olmak üzere,
    xn – yn = (x – y) (xn – 1 + xn – 2 y + xn – 3 y2 + … + xyn – 2 + yn – 1) dir.
    ii) n bir tek sayma sayısı olmak üzere,
    xn + yn = (x + y) (xn – 1 – xn – 2y + xn – 3 y2 – … –
    xyn – 2 + yn – 1) dir.
    4. Tam Kare İfadeler

  • (a + b)2 = a2 + 2ab + b2
  • (a – b)2 = a2 – 2ab + b2
  • (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
  • (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)

    n bir tam sayı olmak üzere,
    (a – b)2n = (b – a)2n
    (a – b)2n – 1 = – (b – a)2n – 1 dir.,
    (a + b)2 = (a – b)2 + 4ab
    5. (a ± b)n nin Açılımı

    Pascal Üçgeni
    (a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.
    Sonra n nin Paskal üçgenindeki karşılığı bulunarak katsayılar belirlenir.
    (a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.
    (a + b)3 = a3 + 3a2b + 3ab2 + b3
    (a – b)3 = a3 – 3a2b + 3ab2 – b3
    (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
    (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4
    C. ax2 + bx + c
    BİÇİMİNDEKİ ÜÇ TERİMLİNİN
    ÇARPANLARA AYRILMASI
    1. a = 1 için,
    b = m + n ve c = m . n olmak üzere,
    x2 + bx + c = (x + m) (x + n) dir.

  • Etiketler:önemli özdeşlikler önemli özdeşlikler nelerdir özdeşlikler nedir önemli özdeşliklere örnekler bazı önemli özdeşlikler a b 2 a2 2ab b2 nedir özdeşlikler özdeşlikler nelerdir önemli özdeşlikler nerede özdeşliklere örnekler en önemli özdeşlikler önemli özdeşlik önemli özdeşikler önemli özdeşlikler sorular 3 önemli özdeşlik bazı özdeşlikler önemli özdeşlikler sırasıyla

    Bir Cevap Yazın

    E-posta hesabınız yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir